Intravenous administration of the anti–vascular endothelial growth factor treatment bevacizumab at high doses can result in serious, systemic adverse events (AEs). Additionally, tumors can become resistant to therapy and adopt a more invasive growth pattern. Thus, delivering bevacizumab for the treatment of cancer at a lower dose in a manner that avoids systemic AEs is necessary.
Intravenous administration of the anti—vascular endothelial growth factor treatment bevacizumab at high doses can result in serious, systemic adverse events (AEs). Additionally, tumors can become resistant to therapy and adopt a more invasive growth pattern. Thus, delivering bevacizumab for the treatment of cancer at a lower dose in a manner that avoids systemic AEs is necessary.
A recent study, published in OncoTargets and Therapy, sought to evaluate the therapeutic effect of intratumoral low-dose bevacizumab versus high-dose treatment in glioma-bearing animals, and found that administering bevacizumab by intratumoral injection might be an effective protocol for treating gliomas by regulating the expression of inflammation and invasion-related factors and inhibiting cancer stem cells.
In mice implanted with glioma cells, researchers found that bevacizumab delivered by intratumoral injection or systemic (intravenous) administration was effective, but intratumoral injection was more efficient; the bioluminescence imaging signal used to assess tumor growth in mice treated intratumorally was less intense than it was in those treated with intravenous therapy.
Injected bevacizumab was also associated with increased survival; mice that received intratumoral injections had a median survival of 40 days versus 27 days in the intravenous therapy group.
The density of tumor blood vessels was also reduced in mice who received injections, as were invasive factors of tumors and cancer stem cells, versus mice who received systemic therapy. However, inflammatory factors of tumors increased in the injection group; cold-inducible RNA-binding protein, which mediates brain injury, was significantly increased in the injected group versus the systemic therapy group.
The authors concluded that localized delivery of bevacizumab was more effective in reducing tumor size and cell infiltration versus intravenous delivery, and could be considered an alternative to intravenous therapy. While more research will be necessary, the identification of this possibility serves as a first step, write the authors, to a novel delivery method that could overcome the AEs associated with systemic therapy.
Reference
Liu YX, L WJ, Zhang HR, Zhang ZW. Delivery of bevacizumab by intracranial injection: assessment in glioma model. Onco Targets Ther. 2018;11:2673-2683. doi: 10.2147/OTT.S159913.
13 Strategies to Avoid the Nocebo Effect During Biosimilar Switching
December 18th 2024A systematic review identified 13 strategies, including patient and provider education, empathetic communication, and shared decision-making, to mitigate the nocebo effect in biosimilar switching, emphasizing the need for a multifaceted approach to improve patient perceptions and therapeutic outcomes.
Biosimilars in America: Overcoming Barriers and Maximizing Impact
July 21st 2024Join us as we explore the complexities of the US biosimilars market, discussing legislative influences, payer and provider adoption factors, and strategies to overcome industry challenges with expert insights from Kyle Noonan, PharmD, MS, value & access strategy manager at Cencora.
Review Confirms Clinical Safety of Sandoz Denosumab Biosimilar vs Originator
December 11th 2024Sandoz's biosimilar denosumab (Jubbonti/Wyost) has demonstrated analytical, pharmacokinetic, pharmacodynamic, and clinical equivalence to reference denosumab (Prolia/Xgeva), supporting its approval and extrapolation to all approved indications.
Biosimilars Oncology Roundup for June 2024—Podcast Edition
July 7th 2024On this episode of Not So Different, we review biosimilar news coming out of June, with clinical trial results from conferences and a study showcasing how to overcome economic and noneconomic barriers to oncology biosimilars.
Pertuzumab Biosimilar Shows Promise in HER2-Positive Breast Cancer Treatment
December 9th 2024The proposed pertuzumab biosimilar QL1209 demonstrated equivalent efficacy and safety to reference pertuzumab (Perjeta) in neoadjuvant treatment of HER2-positive, ER/PR-negative early or locally advanced breast cancer, offering a cost-effective alternative with comparable clinical outcomes.
Switching to Rituximab Biosimilars Is Safe, Effective for Patients With Oncohematological Diseases
December 5th 2024Patients with oncohematological diseases switching to rituximab biosimilars experienced similar safety and efficacy, highlighting biosimilars' potential for cost-effective treatment across various medical conditions.