The FDA introduced a plan to improve clinical trials, including a provision to possibly eliminate clinical efficacy testing for biologic products, which evidence has suggested may not be necessary, according to Sarfaraz K. Niazi, PhD.
On October 16, 2023, the FDA announced a plan entitled “Enhancing Adoption of Innovative Clinical Trial Approaches,” which will lead up to a March 2024 conference to conclude the future steps in making clinical trials more effective and useful, emphasizing regulatory and compliance considerations, patient-centricity and trial infrastructure and organization culture in addition to the adoption of digital health technologies (DHT).
The FDA acknowledged more than a decade ago that the present clinical trial system needs changes and has suggested several novel approaches to design clinical trials, including risk-based and proportionate measures throughout a clinical trial's lifecycle (data collecting, monitoring, and quality management).1,2 This method encourages scientists to prioritize participant safety and data integrity in data and clinical trial processes. It further helps investigators to focus on gathering and evaluating essential trial data and encourages sponsors to be proactive about trial quality. Quality considerations include trial features that protect participants, ensure trial findings, and inform decision-making.
Early attention to these aspects helps design trials efficiently, reducing delays from excessive complexity and burdens. Since the FDA has opened a portal to receive stakeholders' comments and specific suggestions to reduce redundant testing that can reduce the cost of development of drugs, particularly biologics, I am submitting a detailed document describing why the FDA should take decisive action—albeit within the limits of the regulations—to state that clinical efficacy testing is not necessary. This statement is needed to encourage developers with fewer resources to enter the field by removing their fear of ending up with a cost of hundreds of millions of dollars. Given below are my arguments that the stakeholders can use, along with their own, to submit as many comments as possible to the FDA portal:
Several studies have supported the arguments presented above, including a meta-analysis of studies in more than 12,000 patients; the fact that the European Medicines Agency (EMA) or FDA have never requested withdrawal or recall of any biosimilar, none of the over 200 trials for which results are reported showed any difference in comparative efficacy.3 PubMed database lists over 1,200 publications reporting CCS for biosimilars and none noting clinically meaningful differences. Of most tremendous significance is a recent preprint article by former EMA associates summarizing 33 monoclonal antibodies and 3 fusion proteins filings from July 2012 to November 2022 and suggested that analytical, functional, and pharmacokinetic test, including immunogenicity data, is sufficient to establish biosimilarity.
In summary, the CCSs are redundant, which should be made a strong point in the suggestions made to the FDA. An example of how the CCSs are approved is given by the Medicines and Healthcare Regulatory Agency (MHRA) of the United Kingdom, which had updated its biosimilar guideline to state:
“Although each biosimilar development needs to be evaluated on a case-by-case basis, it is considered that, in most cases, a comparative efficacy trial may not be necessary if sound scientific rationale supports this approach. Therefore, a well-argued justification for the absence of an efficacy trial should be appended to CTD Module 1 of the submitted application.”
I recommend that the FDA concur with MHRA and harmonize the biosimilar approval guidelines. It is time for the stakeholders to make their voices heard.
Reference
1. Cohen D. FDA official: "clinical trial system is broken". BMJ. 2013;347:f6980. doi:10.1136/bmj.f6980
2. Woodcock J, LaVange LM. Master protocols to study multiple therapies, multiple diseases, or both. N Engl J Med. 2017;377(1):62-70. doi:10.1056/NEJMra1510062
3. Bloomfield D, D'Andrea E, Nagar S, Kesselheim A. Characteristics of clinical trials evaluating biosimilars in the treatment of cancer: a systematic review and meta-analysis. JAMA Oncol. 2022;8(4):537-545. doi:10.1001/jamaoncol.2021.7230
BioRationality: Biosimilar Associations and Stakeholders Representing Biosimilars
January 20th 2025Sarfaraz K. Niazi, PhD, dives into the role that biosimilar associations and organizations play in promoting biosimilars as well as how their stakeholder demographic and main objectives differ from one another.
Biosimilars Development Roundup for October 2024—Podcast Edition
November 3rd 2024On this episode of Not So Different, we discuss the GRx+Biosims conference, which included discussions on data transparency, artificial intelligence (AI), and collaboration to enhance the global supply chain for biosimilars and generic drugs, as well as the evolving requirements for biosimilar devices.
Improving Biosimilar Access Through Global Regulatory Convergence
January 15th 2025Achieving global regulatory harmonization for biosimilar vaccines and immunotherapies is essential to improving market access, reducing costs, and enhancing patient outcomes by streamlining approval processes, fostering international collaboration, and addressing regulatory disparities.
Biosimilars Policy Roundup for September 2024—Podcast Edition
October 6th 2024On this episode of Not So Different, we discuss the FDA's approval of a new biosimilar for treating retinal conditions, which took place in September 2024 alongside other major industry developments, including ongoing legal disputes and broader trends in market dynamics and regulatory challenges.
Equivalence Confirmed: CT-P41 Paves the Way for Affordable Osteoporosis Care
January 8th 2025Celltrion’s denosumab biosimilar demonstrated equivalent efficacy, safety, and immunogenicity compared with the originator in a phase 3 trial involving postmenopausal women with osteoporosis, paving the way for improved accessibility and cost savings in osteoporosis treatment.