New research suggests that inhibiting platelet-derived growth factor (PDGF), which regulates cell growth and division, could help overcome resistance to anti–vascular endothelial growth factor treatment in glioblastoma multiforme.
The anti—vascular endothelial growth factor (anti-VEGF) agent bevacizumab (Avastin), for which a biosimilar (Mvasi) has been approved in the United States, is used to treat a variety of malignancies, including the highly vascularized malignancy glioblastoma.
Glioblastoma cells secrete VEGF, which induces the formation of a dysfunctional vascular system in the tumor, and while ongoing treatment with bevacizumab leads to regression of tumor vasculature, the benefits of bevacizumab in grade IV glioma, or glioblastoma multiforme (GBM), have been small. The slight nature of these benefits may be due to insufficient eradication and inhibition of tumor-associated endothelial cells. Now, new research suggests that inhibiting platelet-derived growth factor (PDGF), which regulates cell growth and division, could help overcome resistance to anti-VEGF therapy in GBM.
Recent clinical studies have shown greater therapeutic efficacy by dual antagonism of PDGF and VEGF in treating age-related macular degeneration, and a research team led by Yi Fan, MD, PhD, investigated whether such a strategy in treating glioblastoma might yield similarly improved benefits.
Click to read more about treating glioblastoma with bevacizumab.
The researchers analyzed specimens and found that VEGF receptor expression was reduced in tumor-derived endothelial cells in both human and mouse GBM endothelial cells. Furthermore, they found that PDGF mediates endothelial-mesenchymal transformation to induce resistance to anti-angiogenic treatment by downregulating expression of VEGF receptor 2 (VEGFR2).
In a mouse model, endothelial cell-specific deletion of PDGF receptor beta was able to sensitize VEGF blockade treatment, and the anti-VEGF agent was then able to efficiently eradicate endothelial cells, leading to abrogated tumor growth and improved survival (+35 days) in GBM-bearing mice.
“Pharmacological inhibition or genetic ablation of PDGF signaling robustly sensitizes anti-VEGF/VEGFR2 treatment in GBM. As such, combination of vascular de-transformation with conventional anti-angiogenic therapy may offer exciting opportunities to treat malignant cancer,” the researchers concluded.
Reference
Liu T, Ma W, Xu H, et al. PDGF-mediated mesenchymal transformation renders endothelial resistance to anti-VEGF treatment in glioblastoma. Nature Communications. 2018;9:3439. doi: 10.1038/s41467-018-05982-z.
The Next Frontier: Oncology Biosimilars in 2025 and Beyond
January 13th 2025The US oncology biosimilar market has rapidly evolved since its launch in 2017, driven by steep price discounts, payer adoption, and provider confidence, with an upcoming wave of biosimilars targeting blockbuster biologics promising further market growth, cost savings, and broader patient access.
Biosimilars Oncology Roundup for June 2024—Podcast Edition
July 7th 2024On this episode of Not So Different, we review biosimilar news coming out of June, with clinical trial results from conferences and a study showcasing how to overcome economic and noneconomic barriers to oncology biosimilars.
Top 5 Most-Read Oncology Articles of 2024
December 24th 2024The top 5 oncology biosimilar articles in 2024 cover Duke's recommendations for cell and gene therapy biosimilars, FDA approval of Shanghai Henlius Biotech's trastuzumab biosimilar, Boehringer Ingelheim layoffs, the safety of rituximab biosimilar CT-P10, and more.
A New Chapter: How 2023 Will Shape the US Biosimilar Space for 2024 and Beyond
December 31st 2023On this episode of Not So Different, Cencora's Brian Biehn and Corey Ford take a look back at major policy and regulatory advancements in 2023 and how these changes will alter the space going forward.
Review Confirms Clinical Safety of Sandoz Denosumab Biosimilar vs Originator
December 11th 2024Sandoz's biosimilar denosumab (Jubbonti/Wyost) has demonstrated analytical, pharmacokinetic, pharmacodynamic, and clinical equivalence to reference denosumab (Prolia/Xgeva), supporting its approval and extrapolation to all approved indications.
Eye on Pharma: Golimumab Biosimilar Update; Korea Approves Denosumab; Xbrane, Intas Collaboration
December 10th 2024Alvotech and Advanz Pharma have submitted a European marketing application for their golimumab biosimilar to treat inflammatory diseases, while Celltrion secured Korean approval for denosumab biosimilars, and Intas Pharmaceuticals partnered with Xbrane Biopharma on a nivolumab biosimilar.