After spinal cord injury, oxidative stress, inflammation, and mitochondrial dysfunction can cause neural damage that was once believed to be both immediate and irreversible. However, neuronal death is now believed to proceed over a period of several days after initial trauma, and to include cellular, molecular, and biochemical cascades, including local inflammatory responses. Tumor necrosis factor is believed to be involved in the local production of cytokines at the site of the injury.
After spinal cord injury, oxidative stress, inflammation, and mitochondrial dysfunction can cause neural damage that was once believed to be both immediate and irreversible. However, neuronal death is now believed to proceed over a period of several days after initial trauma, and to include cellular, molecular, and biochemical cascades, including local inflammatory responses. Tumor necrosis factor (TNF) is believed to be involved in the local production of cytokines at the site of the injury.
In a study recently published in the Asian Journal of Neurosurgery, researchers sought to assess whether the anti-TNF agent etanercept could have neuroprotective effects following spinal cord injury.
The investigators conducted their study in 54 rats, randomly assigned to undergo either skin incision (from which nonischemic spinal cord samples were obtained), spinal cord trauma followed by spinal cord sampling, or spinal cord trauma followed by immediate administration of a single dose of etanercept (at a dose of 5 mg/kg) and spinal cord sampling. Samples were obtained from the rats in each of the 3 groups at 1 hour (n = 6), 6 hours (n = 6), and 24 hours (n = 6).
The researchers found that levels of the pro-inflammatory cytokine interleukin1-beta (IL-1β) levels were lower in rats in the etanercept group at 1 hour and 6 hours after injury, and spinal tissue catalase (an antioxidative enzyme) levels were significantly higher in the etanercept group at 6 hours, versus the trauma-only group. Spinal tissue levels of TNF alpha and malondialdehyde (a lipid peroxidation product that increases immediately after spinal cord injury) were significantly lower in the etanercept group than in the trauma group at hours 1 and 6.
Histopathological grades of trauma in the etanercept group were improved versus the trauma-alone group, though the histopathological grades of the etanercept group were higher at 24 hours than they were at 6 hours. Thus, say the authors, a single dose of etanercept may not be sufficient to maintain its benefits through 24 hours post-injury.
The authors conclude that etanercept decreased TNF and IL-1β levels while increasing antioxidative enzymes at 1 hour and 6 hours, and that early administration of etanercept may help to reduce histopathological damage that occurs after spinal cord injury.
Reference
Hasturk AE, Baran C, Yilmaz ER, et al. Etanercept prevents histopathological damage after spinal cord injury in rats. Asian J Neurosurg. 2018;13(1):37-45. doi: 10.4103/ajns.AJNS_307_16.
How Vertical Integration Drives Innovation and Access in Biosimilars
December 27th 2024Elie Bahou, PharmD, highlights how vertical integration in the biosimilar industry streamlines costs, improves supply reliability, accelerates market adoption, and enhances patient access, while emphasizing the value of collaboration, quality control, and value-based contracts for sustainable health care delivery.
Biosimilars in America: Overcoming Barriers and Maximizing Impact
July 21st 2024Join us as we explore the complexities of the US biosimilars market, discussing legislative influences, payer and provider adoption factors, and strategies to overcome industry challenges with expert insights from Kyle Noonan, PharmD, MS, value & access strategy manager at Cencora.
13 Strategies to Avoid the Nocebo Effect During Biosimilar Switching
December 18th 2024A systematic review identified 13 strategies, including patient and provider education, empathetic communication, and shared decision-making, to mitigate the nocebo effect in biosimilar switching, emphasizing the need for a multifaceted approach to improve patient perceptions and therapeutic outcomes.
What AmerisourceBergen's Report Reveals About Payers, Biosimilar Pricing Trends
May 28th 2023On this episode of Not So Different, Tasmina Hydery and Brian Biehn from AmerisourceBergen discussed results from a recent survey, that were also presented at Asembia 2023, diving into the payer perspective on biosimilars and current pricing trends across the US biosimilar industry.
Commercial Payer Coverage of Biosimilars: Market Share, Pricing, and Policy Shifts
December 4th 2024Researchers observe significant shifts in payer preferences for originator vs biosimilar products from 2017 to 2022, revealing growing payer interest in multiple product options, alongside the increasing market share of biosimilars, which contributed to notable reductions in both average sales prices and wholesale acquisition costs.