A recent study examined whether the use of the anti–tumor necrosis factor agent infliximab could reduce the death of photoreceptors after retinal detachment in an experimental mouse model.
Tumor necrosis factor-alpha (TNF-a) participates in photoreceptor cell death, a process involved in many retinal diseases, including retinal detachment (RD), that can cause irreversible visual impairment and blindness. The death of photoreceptor cells begins immediately after RD, peaking at 2 to 3 days after RD. A recent study, published in Scientific Reports, examined whether the use of the anti-TNF agent infliximab could reduce the death of photoreceptors after RD in an experimental mouse model.
First, the researchers induced RD in adult male mice, and detected the expression of the TNF-a protein in the retina at 1 day, 3 days, and 7 days after RD using Western blotting and immunofluorescence testing. Analysis showed that the expression of TNF-a in the retina peaked in photoreceptor cells at 1 day after RD.
Next, the researchers investigated the effects of the anti-TNF agent infliximab on the expression of TNF-a following RD. The investigators injected infliximab (5 mg/kg) intraperitoneally 2 hours before RD induction, and injected saline into controls. Retinas were harvested and sectioned at 1 day following RD. The researchers found that the expression of TNF-a was suppressed after RD in the infliximab-treated retinas compared with the control retinas at days 1, 3, and 7.
Additionally, the investigators sought to better understand whether infliximab could regulate autophagy, which plays a dual role in cell death and cell survival, by examining the impact of infliximab on the activity of 2 proteins associated with autophagy: LC3B and Atg5. The researchers found that, with infliximab treatment, increased expression of LC3B was maintained through 7 days after RD, while the level of LC3B decreased to baseline at 7 days after RD without infliximab. Similarly, expression of Atg5 increased at day 1 to day 3, and its expression was sustained at 7 days with infliximab. Atg5 levels also declined to baseline at 7 days following RD in controls.
To examine whether this prolonged autophagy caused by inhibiting TNF-a with infliximab led to increased cell survival in photoreceptors, the researchers investigated photoreceptor cell survival at 7 days after RD with infliximab, and found that, with infliximab treatment, there was not a decrease in the number of photoreceptor cells in the outer nuclear layer of the retina, compared with a 40% to 50% loss of such cells in retinas not treated with infliximab.
The researchers concluded that TNF-a is a critical regulator of autophagy that is correlated closely to the homeostasis of photoreceptor cells in this experimental mouse model.
“Autophagy was thought to have a complex influence on cell death and cell survival. We proved that the appropriate level of autophagy activity had a critical influence on the augmentation of cell survival,” the authors concluded. "Control of autophagy to a proper level under pathological conditions may provide a new therapeutic approach to treat photoreceptor degeneration in retinal disorders."
Study Confirms CT-P42 Therapeutic Equivalence to Reference Aflibercept in DME
January 6th 2025The phase 3 trial showed biosimilar CT-P42 (Celltrion) is therapeutically equivalent to reference aflibercept in improving visual acuity in patients with diabetic macular edema (DME), with comparable efficacy, safety, pharmacokinetics, and immunogenicity at 24 weeks, with more long-term data expected.
Biosimilars in America: Overcoming Barriers and Maximizing Impact
July 21st 2024Join us as we explore the complexities of the US biosimilars market, discussing legislative influences, payer and provider adoption factors, and strategies to overcome industry challenges with expert insights from Kyle Noonan, PharmD, MS, value & access strategy manager at Cencora.
How Vertical Integration Drives Innovation and Access in Biosimilars
December 27th 2024Elie Bahou, PharmD, highlights how vertical integration in the biosimilar industry streamlines costs, improves supply reliability, accelerates market adoption, and enhances patient access, while emphasizing the value of collaboration, quality control, and value-based contracts for sustainable health care delivery.
Insights from Festival of Biologics: Dracey Poore Discusses Cardinal Health’s 2024 Biosimilar Report
May 19th 2024The discussion highlights key emerging trends from the Festival of Biologics conference and the annual Cardinal Health Biosimilars Report, including the importance of sustainability in the health care landscape and the challenges and successes in biosimilar adoption and affordability.
13 Strategies to Avoid the Nocebo Effect During Biosimilar Switching
December 18th 2024A systematic review identified 13 strategies, including patient and provider education, empathetic communication, and shared decision-making, to mitigate the nocebo effect in biosimilar switching, emphasizing the need for a multifaceted approach to improve patient perceptions and therapeutic outcomes.